Recommendations on Boundaries for main GIA parameters

GIA Cut Grade Boundaries

MyRound Boundaries

GIA Cut Grade used during Briliant optimization with appraiser "GIA Facetware + MyRound". This grade is a complex nonconvex discrete function from 6
parameters: Table, CrownAngle, PavilionAngle, StarLength, LowerGirdleLength, GirdleBezel. The characteristics of this function are already a proble
 use it in optimization algorithms. SmartRecut operates in 2 stages. At the first stage, a solution is sought in a large convex area of the parameters sixduality, then the second stage is turned on. At the second stage, the nearest six-dimensional cell of user-defined quality is found and optimization does not $g o$ beyond its Boundaries.

The first figure shows for each of the 6 parameters: Boundaries of cells, Size of cells, centers of cells - Rounded values for GIA grade and rounding of
average values to Rounded values for GIA grade is illustrated. The values for the figure were taken closer to the center of the EX zone. Exception: There is no EX-combination with LowerGirdleLength $=65$.

Another problem with the GIA Cut Grade for optimization algonims is that he GIA before rounding uses a peculiar way of paramelers averaging instead of the isual mathemaical averaging. SmartRecut can only use usual mathemaical averaging. Therefore, SmartRecut cannot use the space close to the Boundarie to peculiar averaging.

In addition to the GIA Cut Grade, users can set their own MyRound intervals for each of these parameters via Appraiser editor. And these boundaries can
create problems tor the Smartecutalgorithm.

When setting boundaries, it is important to take into account not only Rounded values for GIA grade you want, but also "cells" Boundaries. We recommend er her than ($0.25 *$ Size) Similarly the distance from the right MyRound boundary (Ar) to the nearest smaller Boundary of the "cell" was more than ($0,25 *$ size) more thaod Appraiser boundaries". Let's call (0,25 *Size) it a "recommended cell size".
For most of the parameters, the "dead zone" is less than "recommended cell size". But after subtraction of the "dead zone" size from "recommended cell size", the optimization has a very small search area, therefore it is statistically more profitable to work in a farther green "cell", and ignore the red "cells". See "Bad Ap praiser boundaries".
Even more bad situation for optimization when there are no green cells. See "Problem Appraise boundaries". And there are enough one-parameter bad boundaries to make all 6 D -cells are red. For example, LowerGirdleLength $[77$, 78.4$]$ or narrower boundaries create this situation. At the time of Carbon 1.4 .4 ,
the second stage of Smartiecut does not correct the quality of the GIA Cut Grade in such situations. In the future, one of the red "cells will be selected in such a situation, but this does not cancel the recommendation about "recommended cell size" $=(0,25 *$ Size .

Let's take a look at StarLength as an example. For StarLength "recommended cell size" $=1.25 \%$. There are 3 MyRound intervals in the figure

Interval $12=[51.5,58.2]$ is bad. It contains two red cells $12 \mathrm{a}=[51.5,52.5]$ of length 1% and $\mathrm{IL} \mathbf{c}=[57.5,58.2]$ of length 0.7%. And one full green cell $12 \mathrm{~b}=[52.5$,
57.5 . Interval $13=[61,65.5$ is good. It contains two green cells $13 \mathrm{a}=[61,62.5]$ of length 1.5% and $13 a=[62.5,65.5]$ of length 3%. Both are longer than "recommend
ed cell size" $=1.25 \%$. If you reduce $I 3$ to $[61.3,655.5]$ it becomes bad. If you reduce it of $[61.3,63.7]$ it becomes problem

Related Pages

MyRound | GIA Facetware + MyRound
Smart Recut

